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Abstract

The aim of this work is to introduce the physics community to the high performance of radial basis functions (RBFs)
compared to other spectral methods for modeling transport (pure advection) and to provide the first known application of
the RBF methodology to hyperbolic partial differential equations on a sphere. First, it is shown that even when the advec-
tive operator is posed in spherical coordinates (thus having singularities at the poles), the RBF formulation of it is com-
pletely singularity free. Then, two classical test cases are conducted: (1) linear advection, where the initial condition is
simply transported around the sphere and (2) deformational flow (idealized cyclogenesis), where an angular velocity is
applied to the initial condition, spinning it up around an axis of rotation. The results show that RBFs allow for a much
lower spatial resolution (i.e. lower number of nodes) while being able to take unusually large time-steps to achieve the same
accuracy as compared to other commonly used spectral methods on a sphere such as spherical harmonics, double Fourier
series, and spectral element methods. Furthermore, RBFs are algorithmically much simpler to program.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to introduce the prospect of using radial basis functions (RBFs), a novel
numerical methodology that does not require any mesh or grid, for geophysical modeling in spherical
domains. It has the advantage of achieving spectral accuracy in multi-dimensions for arbitrary node layouts
with extreme algorithmic simplicity. For the purposes of interpolating multi-dimensional surfaces, the meth-
odology has been around for approximately 30 years. However, it is only in the last 15 years that it has been
applied to solving mixed partial differential equations (PDEs) containing parabolic and/or elliptic operators
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(cf. [1–6]). It has furthermore only been considered for PDEs in spherical domains for these same operators in
the last 5 years [7,8]. Thus, the aim of this article is two-fold: (1) to present the elegance and power of this
methodology to the physics community and (2) to provide the first known application of it to purely hyper-
bolic PDEs in spherical domains.

Since geophysical fluid motions on all scales are dominated by the advection process, the numerical solution
to the advection problem is therefore fundamentally important for the overall accuracy of the flow solver.
Thus, in the current paper, we will show striking results for advection tests with respect to accuracy and time
stability, requiring only a low number of degrees of freedom for spatial discretization while being able to take
much larger time-steps than methods currently employed in geophysical modeling (e.g. spherical harmonics,
spectral elements). We consider two well-known test cases that probe the suitability of a new numerical meth-
odology for modeling advection in spherical geometries. The first is the classical advection of a cosine bell with
compact support over a sphere at different angles of rotation [9]. The second is a cyclogenesis test problem
with a deformational flow that describes the wrap-up of a vortex with increasingly stronger gradients over
time, which is a simple model for the observed evolution of cold and warm frontal zones [10]. An overview
of the paper is as follows: Section 2 gives an introduction to RBFs; Section 3 discusses node distributions
on a sphere and the convergence rates of RBF interpolants; Section 4 derives the RBF formulation of the
advection operator; Sections 5 and 6 are the numerical tests and results for convergence and time stability.

2. Introduction to radial basis functions

The motivation of the RBF methodology originated with Hardy [11] asking the question, ‘Given a set of
sparse scattered data, ffjgN

j¼1, at the node locations fxjgN
j¼1 in multi-dimensions, can an interpolant be con-

structed that adequately represents the unknown surface?’. It was first shown by Mairhuber [12] that, in more
than one dimension, interpolation by an expansion in basis functions, fwjðxÞg

N
j¼1, x 2 Rd , that are independent

of the node locations is not well-posed. That is, there exists an infinite number of node configurations that will
yield a singular interpolation problem. Hardy bypassed this singularity problem with a novel approach in
which the interpolant is constructed from linear combinations of a single basis function that is radially sym-
metric about its center and whose argument is dependent on the node locations. In lieu of giving up orthog-
onality, well-posedness of the interpolant and its derivatives for any set of distinct scattered nodes in any

dimension is gained.
Commonly used RBFs are given in Fig. 1, where r ¼ kx� xjk is the Euclidean or ‘2 norm. The piecewise

smooth RBFs feature a jump in some derivative at x ¼ xj and thus can only lead to algebraic convergence. For
instance, the radial cubic jrj3 has a jump in the third derivative, leading to fourth-order convergence in 1D,
with the order of convergence increasing as the dimension increases (cf. [13]). On the other hand, the evidence
strongly suggests that infinitely smooth RBFs will lead to spectral convergence [14,15]. Notice that the infi-
nitely smooth RBFs depend on a shape parameter e. It was first shown by Driscoll and Fornberg [16] that,
in 1D, in the limit of e! 0 (i.e. flat RBFs) the RBF methodology reproduces pseudospectral methods (PS)
if the nodes are accordingly placed (i.e. equispaced nodes for Fourier methods, Gauss-Chebyshev nodes for
Chebyshev methods, etc.).

A comparison between the concept of PS methods and RBFs with differing values of the shape parameter is
given in Fig. 2. First, a PS expansion is always along a given coordinate direction, making them inherently 1D
objects (with expansions in higher dimensions represented by a tensor product with the respective 1D basis
expansions). By contrast, the scalar argument r of the RBF does not depend on a coordinate system, but is
simply the distance between two nodes that are defined in d-dimensional space. Secondly, PS methods approx-
imate a function by linear combinations of orthogonal functions that become more oscillatory as the degree of
the polynomial increases, resulting in very clearly linearly independent functions as can be seen in Fig. 2. By
contrast, RBFs approximate a function with an expansion of one radially symmetric function whose only var-
iation is the node location at which it is centered. While increasing the order of the polynomial expansion
improves accuracy for PS approximations, accuracy of an RBF approximation can be improved by increasing
the number of terms in the expansion and/or decreasing the shape parameter e [4]. In either case, the shifted
RBFs in the expansion become indistinguishable from one another as can clearly be seen in the case for
e ¼ 0:01 in Fig. 2, which leads to ill-conditioning. However, even for a moderate number of terms in the
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Fig. 1. Examples of commonly used RBFs /ðrÞ: RC = radial cubic, TPS = thin plate spline, MQ = multiquadric, GA = Gaussian,
IMQ = inverse multiquadric, IQ = inverse quadratic. The variable e in the infinitely smooth RBFs is known as the shape parameter.
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expansion and values of e � Oð1Þ, the evidence in the paper strongly suggests that RBFs have the potential of
outperforming other methods that require much higher spatial and temporal resolution to achieve the same
accuracy and which are much more algorithmically complex.

It should be noted that the Contour-Padé algorithm [17] can be used to bypass the RBF ill-conditioning
mentioned above for the case of a fixed (relatively small) number of terms and increasingly small values of
e (even e = 0). Furthermore, Fornberg and Piret [18] have recently discovered an algorithm for bypassing
the ill-conditioning for RBF interpolation on the surface of the sphere both as the number of terms is
increased and e is decreased right to zero. We will, however, not pursue these algorithms in this study.

Although we will be solving hyperbolic PDEs, a good way to introduce the RBF methodology is through
interpolation since at each time-step (in the explicit scheme) the exact spatial derivative operator is applied to
the RBF interpolant to arrive at the derivative of the function at the node points. As mentioned above, RBFs
approximate a function f(x) sampled at some set of N distinct node locations by translates of a single radially
symmetric function /ðrÞ. For example, given the nodes fxjgN

j¼1 and corresponding scalar function values
ffjgN

j¼1, the RBF interpolant sðxÞ to the data is defined by
sðxÞ ¼
XN

j¼1

cj/ðkx� xjkÞ; ð1Þ
where the expansion coefficients, fcjgN
j¼1, are found by enforcing the collocation conditions such that the resid-

ual is zero at the data locations. This is equivalent to solving the symmetric linear system of equations
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Fig. 2. Comparison of 1D Chebyshev PS basis, T kðxÞ, and Gaussian (GA) RBF basis, /ðrÞ ¼ e�ðerÞ
2

(for this case r ¼ x).
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Fig. 3. Example of RBF collocation in 1D.

Fig. 4. Example of RBF collocation in 2D (here, shown for larger e – i.e. more peaked – than would typically be used).
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where A is the interpolation matrix. The concept of RBF collocation is illustrated in Figs. 3 and 4 for 1D and
2D, respectively. For RBFs such as the GA, IMQ, and IQ, (2) is positive definite regardless of the distinct
node locations and the dimension. For complete details on the well-posedness of (2) for all the RBFs listed
in Fig. 1, see [19, Chapters 12–16], for example.

To obtain a discrete RBF derivative operator, the exact differential operator is applied to the interpolant (1)
and then evaluated at the data locations. As a result, we will first comment on the node distribution and con-
vergence of RBF interpolants on the sphere before discussing the derivation of the RBF derivative operator in
Section 4.

3. Node distribution and convergence of RBF Interpolants

Since RBFs only depend on the scalar distance between nodes and not on a grid, the basis functions are not
linked to any geometry or dimension. In other words, there is nothing inherently built into the RBFs to shout
out ‘‘spherical geometry’’. In fact, they are unaware of the poles inherent in the spherical coordinate system.
Studies have shown that if the shape parameter, e, is kept fixed throughout the domain (as will be done in the
current study—variable shape parameter is needed when implementing local mesh refinement [20,6,21]) best
results are achieved with roughly evenly distributed nodes [22]. Since only a maximum of 20 nodes can be
evenly distributed on a sphere, there are a multitude of algorithms to define ‘‘even’’ distribution for larger
numbers of nodes, such as equal partitioned area, convex hull approaches, electrostatic repulsion, etc. [23].
Although any of these will suffice, we have decided to use an electrostatic repulsion approach since the nodes
do not line up along any vertices or lines, emphasizing the arbitrary node layout and coordinate-free nature of
a RBF methodology. A multitude of different size node sets is readily available at the website [24].

Assuming fxjgN
j¼1 are N nodes on the unit sphere, this approach, also known as the minimum energy (ME)

point distribution on the sphere S
2, provides a quasi-uniform distribution on the sphere by maximizing the

minimum distance between nodes according to the measure
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x2S2

min
16i6N

distðx; xiÞ; ð3Þ
where dist is the geodesic distance from x to xi. This quantity is referred to as the mesh-norm [24,25] and, geo-
metrically, it represents the radius of the largest cap that covers the area between any subset of nodes on the
sphere. The ME node sets have the property that h decays approximately uniformly like the inverse of the
square root of the number of nodes N, i.e.
h � 1ffiffiffiffi
N
p :
Thus, they are similar to a uniform discretization of the unit square. In Fig. 5, the distribution for 1849 nodes
on the unit sphere is displayed.

The mesh norm is also of practical importance since it appears in many proofs of error bounds for RBF
interpolation on the sphere (e.g. [25,26]). Indeed, in the context of infinitely smooth RBFs, it is shown in
[25] that, provided the underlying function being interpolated is sufficiently smooth, RBF interpolants con-
verge (in the L1 norm) like h�1=2e�c=4h, i.e. at an exponential rate, for some constant c > 0 that depends on
the RBF. For the ME node sets, convergence will thus proceed like N 1=4e�c

ffiffiffi
N
p

=4. In the experiments that follow
we will demonstrate that this error bound seems to also hold for the RBF method-of-lines approximation of
the two test cases.

4. RBF formulation of the advection operator

Physical phenomena are naturally not associated with any coordinate system. However, scientists impose
coordinate systems to formulate their PDEs. In spherical geometries, this results in the spatial operator being
singular at the poles. For example, the gradient on the surface of a unit sphere in spherical coordinates (k is
longitude, h is latitude and measured from the equator) is given by
r ¼ 1

cos h
o

ok
k̂þ o

oh
ĥ; ð4Þ
which is singular at h ¼ � p
2
, the north and south pole, respectively. Since RBFs depend only on the Euclidean

distance between nodes, the basis functions are thus not associated with any coordinate system and therefore
do not ‘‘feel’’ the effects of the geometry of the domain. As a result, RBFs do not recognize the singularities
naturally inherent in the coordinate system and all remnants of such singularities vanish when the methodol-
ogy is implemented. This allows the scientist to directly connect the physics to the numerics. Since the test
cases that are considered both use the advection operator, we will now see how it becomes nonsingular when
formulated with RBFs.
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Let x ¼ ðx; y; zÞ, xj ¼ ðxj; yj; zjÞ be two points on the surface of the unit sphere and ðk; hÞ, ðkj; hjÞ the corre-
sponding spherical coordinates, i.e.
x ¼ cos k cos h;

y ¼ sin k cos h;

z ¼ sin h:

ð5Þ
(This differs from traditional spherical coordinates in that we measure h from the equator rather than from the
north pole.) Then, the Euclidean distance from x to xj is
r ¼ kx� xjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xjÞ2 þ ðy � yjÞ

2 þ ðz� zjÞ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos h cos hj cosðk� kjÞ � sin h sin hjÞ

q
:

It is important to note that the distances are not great circle arcs measured along the surface but are the
Euclidean distance measured straight through the sphere.

Let /jðrÞ ¼ /ðkx� xjkÞ be an RBF centered at xj. Using the chain rule, the partial derivatives of the RBF
/jðrÞ with respect to k and h are given by
o

ok
/jðrÞ ¼ cos h cos hj sinðk� kjÞ

1

r

d/j

dr

� �
; ð6Þ

o

oh
/jðrÞ ¼ ðsin h cos hj cosðk� kjÞ � cos h sin hjÞ

1

r

d/j

dr

� �
: ð7Þ
Note that (6) and (7) are well defined for r = 0 (i.e. x ¼ xj since we are assuming /jðrÞ is C1 and radially sym-
metric about xj). Inserting (6) and (7) into (4), we have the action of the gradient operator on the RBF scalar
function:
r/jðrÞ ¼ ½cos hj sinðk� kjÞk̂þ ðcos hj sin h cosðk� kjÞ � sin hj cos hÞĥ� 1

r

d/j

dr

� �
: ð8Þ
As mentioned at the beginning of this section, the gradient has a singularity in the k direction at the poles
unless the derivative (with respect to k) of the underlying function also vanishes at the poles. We see from
(8) that this is exactly what happens when using an RBF.

Now, we have all the components that are necessary to build the action of the advection operator on an
RBF representation of a geophysical field. Suppose we want to advect some scalar quantity, say a given height
field hðk; hÞ, where the components of the advecting wind U are given by U ¼ uðk; hÞk̂þ vðk; hÞĥ. Let
fxjgN

j¼1 ¼ fðkj; hjÞgN
j¼1 be the node locations where hðk; hÞ is known. We first represent hðk; hÞ as an RBF

expansion given by
hðk; hÞ ¼
XN

j¼1

cj/jðrÞ ð9Þ
where /jðrÞ is again the RBF centered at the node xj ¼ ðkj; hjÞ. We then apply the exact differential operator
ðU � rÞ ¼ uðk; hÞ
cos h

o

ok
þ vðk; hÞ o

oh
to (9) and evaluate it at the node locations:
ðU � rÞhðki; hiÞ ¼
XN

j¼1

cj ½ðU � rÞ/jðrÞ�jðk;hÞ¼ðki ;hiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Components of B

ði ¼ 1; . . . ;NÞ

¼ Bc

¼ ðBA�1Þh
¼ DN h;

ð10Þ
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where h contains the N discrete values of the height field h at the nodes, c contains the N discrete expansion
coefficients and is formally given by c ¼ A�1h, where A�1 is the inverse of the RBF interpolation matrix
defined in (2). The discrete operator DN ¼ BA�1 is referred to as the RBF differentiation matrix, and the
components of the matrix B are explicitly given by
Fig. 6.
(lighte
Bi;j ¼ fuðki; hiÞ cos hj sinðki � kjÞ þ vðki; hiÞ½cos hj sin hi cosðki � kjÞ � sin hj cos hi�g
1

r
d/
dr

� �����
r¼kxi�xjk

;

ð11Þ

for i; j ¼ 1; . . . ;N . Notice that (11) is nowhere singular on the sphere, remembering of course that the velocity
field is completely smooth. Although the computation of DN requires OðN 3Þ operations, it is a pre-processing
step that needs to be done only once.

5. Numerical test case 1: solid body rotation

The first test case (solid body rotation or passive advection), using the setup given in [9], simulates the
advection of a height field, hðk; hÞ, over the surface of a sphere at an angle a relative to the pole of the standard
longitude–latitude (k-h) grid (see Fig. 6). The PDE to be solved is the advection equation, which in spherical
coordinates is given by
oh
ot
þ u

a cos h
oh
ok
þ v

a
oh
oh
¼ 0; ð12Þ
with the advecting wind being
u ¼ u0ðcos h cos aþ sin h cos k sin aÞ; ð13Þ
v ¼ �u0 sin k sin a; ð14Þ
where a is the radius of the earth, 6:37122� 106 m and u0 ¼ 2pa=ð12 days ¼ 288 hÞ.
We will consider two initial conditions (which are also the solution for all time) that are to be advected

without distortion by the above steady wind (13) and (14). As illustrated in Fig. 7a, the first is the classical
test case in the literature [9], a cosine bell profile that is C1 and centered at ðkc; hcÞ:
Solid body rotation over the surface of a sphere at an angle a (darker solid lines) relative to the standard longitude–latitude grid
r solid lines).
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hðk; hÞ ¼
h0

2
1þ cos p q

R

� �	 

q < R;

0 q P R;

(
ð15Þ
where h0 ¼ 1000 m, R ¼ a=3 and q ¼ a arccosðsin hc sin hþ cos hc cos h cosðk� kcÞÞ. The second—illustrated in
Fig. 7b—is an exceptionally steep Gaussian profile that is C1:
hðk; hÞ ¼ h0e�ð2:25q=RÞ2 ; ð16Þ

where h0, q, and R are the same as (a). This profile is used to demonstrate that the RBF method is indeed
spectral.

The center of the bell is initially taken to be at the equator, ðkc; hcÞ ¼ ð0; 0Þ. In testing previously used meth-
ods such as spherical harmonics, double Fourier series, or spectral element methods, the object is rotated at
various angles a with regard to the polar axis of the spherical coordinate system, with rotation over the poles
being the most severe test case. This is to see how the methodology handles the ‘‘pole singularity’’ inherent in a
spherical coordinate system. Since RBFs and the node layout are free of any coordinate system, the error is
invariant to the angle of rotation (see the Appendix for a rigorous proof). As a result, the choice of a is irrel-
evant. We choose a ¼ p=2 (i.e. flow right over the poles) only for comparison reasons to other methods, since
it is the angle for which the error is most quoted in the literature.
(a) Cosine bell and (b) Gaussian bell initial conditions and exact solution after 1 revolution (t = 12 days) on an ‘unrolled’ sphere.
lack circles mark the N = 4096 ME node points.
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The method-of-lines RBF formulation for (12) is given by
Fig. 8.
circles
base o
time in
oh

ot
þ DN h ¼ 0; ð17Þ
where the differentiation matrix DN represents the discretized advection operator derived in (10) of the previ-
ous section. The standard fourth-order Runge–Kutta scheme (RK4) is used to advance the solution in time
and no filtering is applied. The code is given in Appendix B with several lines added for easier readability.

5.1. Comparative results for solid body rotation

We first consider the cosine bell test case using GA RBFs (cf. Fig. 1). Other infinitely smooth RBFs were
also considered for this test case, as well as deformational flow, with ignorably small differences in accuracy
and time stability (although special treatment is needed for MQ since they are not positive definite). As a
result, Gaussians were chosen since they are a common function of familiarity. In this subsection, the follow-
ing values are used e ¼ 8:2, N = 4096 ME nodes, and a time-step of Dt ¼ 30 min. The choice for these values is
(a) Numerical solution of the cosine bell test case after 1 revolution (t = 12 days) on an ‘unrolled’ sphere (cf. Fig. 7a). Solid black
mark the N = 4096 ME node points. (b) Orthographic projection of the error (exact – numerical) for part (a). Solid line marks the
f the cosine bell where the function is C1, while the dashed line outlines the sphere. Results are for the GA RBF and RK4 for the
tegration with a 30 min time-step (spatial errors dominate).
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to obtain error norm results that are comparable to other methods used in numerical climate modeling, and
yet point out the strength of the RBF method in terms of time stability and spatial resolution requirements.

Fig. 8a displays a surface plot of the numerical solution after one full revolution around the sphere (t = 12
days). Comparing this to the true solution (also the initial condition) in Fig. 7a, we see that the numerical RBF
solution is visibly identical to the exact solution. Fig. 8b displays an orthographic projection of the error in the
RBF solution, showing all deviations in the solution of less than 1 meter (or an error of < 0:001) in white. The
figure shows that the dominant error is a ring at the base of the bell where the function is only C1. Further-
more, there is no evidence of any trailing dispersive wave trains. At the conclusion of this revolution, the ‘2

error is 6:18� 10�3 and the ‘1 error is 2:27� 10�3: Fig. 9 shows the error as a function of time for the 12 days
simulation.

Table 1 compares the performance of different spectral methods used on the sphere: spherical harmonics
(SH), double Fourier (DF), and a discontinuous Galerkin method (DG), a hybrid approach combining spec-
tral elements and finite volume methods [27], developed for spherical geometry by [28]. This last method was
chosen over a direct spectral element approach (as [29] or [30]) since it produced better results for this test case.
A common basis of comparison for all the methods considered that could be found in the literature was the
spatial and temporal specifications needed for each method to achieve an ‘2 error of approximately 0.005
[31,32,28]. Studying Table 1 there are five points that clearly stand out:

(1) The number of nodes needed for the RBF method is approximately half that needed for the DG method
and eight times less than needed for both SH and DF.

(2) The time-step taken for the RBF method is five times larger than the DG and 20 times larger than that
taken for both SH and DF.
Table 1
Performance comparison between commonly used spectral methods in order to achieve a ‘2 error of approximately 0.005. M is the number
of spherical harmonics (in this case M = 7396)

Method Cost per time-step ‘2 error Time-step Number of grid points Code length (# of lines) Local mesh refinement

RBF O(N2) 0.006 1/2 h 4096 < 40 yes
SH O(M3=2) 0.005 90 s 32768 > 500 no
DF O(N log N ) 0.005 90 s 32768 > 100 no
DG O(kNe) 0.005 6 min 7776 > 1000 yes

Ne is the total number of nodes per element and k is the number of elements.
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Fig. 9. The ‘1 and ‘2 error for the cosine bell test case as a function of time for the N = 4096 ME node set. Advection of the height field is
directly over the poles. Results are for the GA RBF, and Dt ¼ 30 min in the RK4 integration.
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(3) The algorithmic complexity of implementing an RBF method is essentially trivial in comparison to other
methods. Our code from start to finish is less than 40 lines of MATLAB, using NO MATLAB routines
that need to be compiled (i.e we use only built-in MATLAB routines that are coded at the machine level
as *, 0, and /). The complexity of the code would not change if the dimension of the problem to be solved
is increased, which can not be said for any other method.

(4) Only the DG and RBF method allow for local mesh refinement [20,6,21].
(5) The RBF method has the highest computational cost, requiring a matrix–vector multiply per time-step,

where the matrix is full. However, fast algorithms are available that have the potential for reducing this
cost to OðN log NÞ or possibly OðNÞ (cf. [33–35]).

In order to better understand these results, we will first perform a convergence study with regard to: (a)
h-refinement, the number of nodes used N (remembering that 1=

ffiffiffiffi
N
p

is proportional to the spacing of the
node distributions) and (b) e-refinement, the shape parameter of the RBF. Then, we will do a stability and
eigenvalue study with regard to these parameters, illustrating why such large time-steps can be taken. Our
objective is to show trends in convergence and stability which can be illustrated with a much lower number
of nodes. We choose N = 1849, the same number of degrees of freedom as the National Center for Atmo-
spheric Research (NCAR) T42 spherical harmonic community climate model (i.e. spherical harmonics up
to order 42), which is much quoted in the literature for comparison purposes [31,29,32].

5.2. Convergence study

5.2.1. h-Refinement

Fig. 10a shows the convergence rates in both the ‘1 and ‘2 norm for the cosine bell test case on a log-log
plot. Although a time-step of Dt ¼ 30 min was used for each node set in the RK4 integration, as the size of the
node set decreases the maximum time step so that spatial errors dominate will increase, e.g. for N = 1849, a
time step of 50 min could be used. Similar to all spectral methods, the RBF methodology results in spectral
convergence if the initial condition is C1. However, in this case the cosine bell is only a C1 function, which
results in low-order algebraic convergence as illustrated in the figure by the dashed lines.

To demonstrate that the RBF method is indeed spectral, we instead advected the steep Gaussian bell (16)
(cf. Fig. 7b) that is similar to the cosine bell, but is C1. Fig. 10b (a log-linear plot) shows that indeed the con-
vergence rates are spectral in both the ‘1 and ‘2 norm with the error being 2ð10Þ�7 for N = 4096.

It should be noted that there is nothing special about the node layout used. Similar error norms would be
achieved if we were using equal-area node distributions or those laid out according to the golden ratio, as in a
sunflower pattern. The only requirement is that the nodes are roughly equally distributed in some sense on the
surface of the sphere, as close clustering can lead to ill-conditioning. In a similar vein, for the number of nodes
used in the paper, N 6 4096, ill-conditioning is not a problem and MATLAB’s mrdivide command can be
used to calculate DN without hesitation for the range of e used (see next section).

5.2.2. e-Refinement

While refining h (i.e. increasing N) results in more terms in the RBF expansion and a better resolution in the
approximation, refining the shape parameter e, as illustrated in the right column of Fig. 2, results in a
smoother basis for the RBF expansion. (We use the term smoother here not to mean the number of bounded
derivatives, but that the growth of the derivatives is smaller.) Qualitatively, this means that refining e allows
the RBF expansion to better approximate smoother functions, however the phenomenon is not fully under-
stood. It has generally been reported in the literature that there is typically an optimal value of e and this value
tends to decrease with increasing smoothness of the underlying function being approximated (cf. [4,36]). While
a few algorithms have been developed for trying to determine the ‘‘optimal e’’ (e.g. [36,37]), they are primarily
based on heuristic arguments and are not robust. We therefore do not employ them in this study.

As noted in Section 2, as e is refined more and more, the shifted RBFs in the expansion become less and less
distinguishable from one another, leading to ill-conditioning of the linear system (2). While it has been shown
that RBF interpolants are overall well-conditioned even in the limit of e! 0 refinement [16,38], special algo-
rithms like Contour-Padé [17] and RBF-QR [18] are needed for these smaller values. However, as discussed
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next, we are able to obtain very good results for our test cases even with moderate values of e that are well
outside the ill-conditioning range. In an upcoming paper, Fornberg and Piret [39] compare the performance
of different RBFs for this test case in the small e range, where ill-conditioning sets in.

To test the accepted results on e-refinement we fixed the number of nodes in the RBF expansion at
N = 1849 and performed a test on the error as a function of e for the cosine and Gaussian bell initial condi-
tions with the GA RBF and a time step Dt ¼ 50 min. The results are shown in Figs. 11a and b, respectively.
We can clearly see from the figures that there is an optimal value of e for which the error is the smallest, and
that, for the rougher C1 cosine bell initial condition, the optimal e is larger than the C1 Gaussian bell (e � 6
and e � 3, respectively). The increase in error after the optimal e is not due to ill-conditioning but is a property
of the function being approximated (see [20]).

5.3. Eigenvalue stability

Since the RBF differentiation matrices are not normal, classical eigenvalue stability theory is theoretically
insufficient. However, in practice, as with many pseudospectral methods, it is still a very good predictor for the
maximum stable time-step as we shall see below.



2 4 6 8

10
−2

10
−1

2 4 6 8
10

−4

10
−3

10
−2

Fig. 11. Normalized ‘1 and ‘2 error measured after one full revolution (t = 12 days) as a function of e for the (a) cosine bell and (b)
Gaussian bell initial conditions. Results are for N = 1849 ME node set, the GA RBF, and Dt ¼ 50 min in the RK4 integration.

1072 N. Flyer, G.B. Wright / Journal of Computational Physics 226 (2007) 1059–1084
Let us first examine why such high accuracy can be achieved with a large time step compared to other meth-
ods as reported in the previous section. If the eigenvalues of the differentiation matrix DN for N = 1849 are
plotted as in Fig. 12, we see that they lie exactly on the imaginary axis. Not one eigenvalue lies in the right
half plane, which would eventually lead to numerical instability, nor in the left half plane, leading to dissipa-
tion. This result follows from the fact that DN ¼ BA�1, the product of an anti-symmteric matrix B given by (11)
and a positive definite matrix A given by (2). Although the product of the two is not antisymmetric, it pre-
serves the property of antisymmetry that all eigenvalues lie on the imaginary axis [40].

The size of the maximum time step to maintain stability depends on the eigenvalues of DN fitting within the
stability domain of the RK4 method. The maximum eigenvalue of DN, in turn, depends on the two parameters
N and e as shown in Fig. 13. As the accuracy of the method increases, either by increasing N (h-refinement) or
decreasing e (e-refinement), the maximum eigenvalue will increase, implying that the maximum time step that
can be taken must decrease. Note, however, that changes in these two variables have different impacts on the
maximum eigenvalue (or allowable time step). The maximum eigenvalue linearly increases with spatial reso-
lution up/down the imaginary axis, which is the classical result for linear hyperbolic PDEs. In contrast,
decreasing e changes the maximum eigenvalue in a manner that is reminiscent of what happens to finite dif-
ference approximations to derivative operators as the order increases for fixed N. For example, increasing the
accuracy of the first derivative operator from second order centered finite differences to Fourier PS, increases



−1 0 1

x 10
−8

−25

−20

−15

−10

−5

0

5

10

15

20

25

Re(λ)

Im
(λ

)

Fig. 12. Eigenvalues of the RBF differentiation matrix for the solid body rotation test case. Results are for N = 1849 ME node set and the
GA RBF with e = 6.

20 30 40 50 60
10

15

20

25

30

35

M
ax

. i
m

ag
in

ar
y 

ei
ge

nv
al

ue

0 2 4 6 8 10
17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

M
ax

. i
m

ag
in

ar
y 

ei
ge

nv
al

ue

Fig. 13. Maximum eigenvalue of the differentiation matrix for the solid body rotation test case as a function of (a) the spacing of the ME
node sets (h � N�1=2) and (b) e where N = 1849.

N. Flyer, G.B. Wright / Journal of Computational Physics 226 (2007) 1059–1084 1073



Table 2
A comparison between e and the corresponding maximum eigenvalue of the differentiation matrix for the cosine bell test together with the
maximum allowable time-step for RK4 according to eigenvalue stability theory

e Max. eigenvalue Dtmax (min)

1 21.3 191
2 21.2 192
3 20.9 195
4 20.6 198
5 20.2 202
6 19.6 208
7 19.0 215
8 18.2 223
9 17.4 234

Results are for the N = 1849 ME node set and the GA RBF.
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the maximum eigenvalue by p ([41, pp. 41–42]). In a similar manner, as shown in Fig. 13, the maximum eigen-
value increases by four as e varies from 9 to 0. However, the reader should be reminded that the RBF method
is spectral for all values of e. It is just that as e decreases to some (typically nonzero) optimal value, the accu-
racy improves (e.g. in the case of the cosine bell it is e = 6, for the Gaussian bell it is e ¼ 3). Furthermore, even
though RBFs reproduce classical PS methods in limit of e = 0 [16,18,42], it is for nonzero values of the param-
eter that RBFs outperform PS as was shown in the comparative study of the previous section.

The results shown graphically in Fig. 13a and b are also given numerically in Tables 2 and 3, where the
maximum eigenvalue has also been translated into the maximum allowable time step for the RK4 integrator
(i.e such that the eigenvalue falls with the RK4 stability domain). For the case N = 1849 or e = 6, the theory
predicts that the maximum time step is 208 min (3 h 28 min). To test this, we plot in Fig. 14 the time evolution
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Fig. 14. The ‘1 error for the cosine bell test for 0 6 t 6 36 days (three full revolutions) using a stable and unstable time-step with RK4 (see
Table 2). Results are for the N = 1849 ME node set and the GA RBF with e = 6.

Table 3
A comparison between

ffiffiffiffi
N
p

, N = number of nodes, and the maximum eigenvalue of the differentiation matrix for the cosine bell test
together with the maximum allowable time-step for the RK4 integrator according to eigenvalue stability theory

N
ffiffiffiffi
N
p

Max. eigenvalue Dtmax (min)

529 23 10.6 383
1024 32 15.2 267
1849 43 19.6 208
3136 56 27.1 150
4096 64 30.8 132ffiffiffiffi

N
p

is inversely proportional to the quasi-uniform spacing of nodes h. Results are for the GA RBFs.
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N. Flyer, G.B. Wright / Journal of Computational Physics 226 (2007) 1059–1084 1075
of the ‘1 error for the cosine bell test case using e = 6 and N = 1849 with a time-step of 208 min and 209 min
in the RK4 integrator. After 36 days of integration (three full revolutions around the sphere), the test run
using a 208 min time step is completely stable while the use of a 209 min time step has caused numerical insta-
bility to set in at approximately 20 days, verifying the predicted results from classical eigenvalue stability
theory. However, for best computational efficiency one should use time-steps so that temporal and spatial
errors match. Such is illustrated in Fig. 15 which shows that for e = 6 and N = 1849 the ‘1 error of the solu-
tion after a 12 days single revolution around the earth is steady up to a 50 min time step. Larger time steps,
although stable as just demonstrated, will cause discretization errors in time to dominate over those in space.
For the comparative study of the previous section with N = 4096, this breaking point was a 30 min time step.
6. Numerical test case 2: deformational flow

The second test case involves no translational motion, but instead an angular velocity field spins up the
initial condition, resulting in two diametrically opposed vortices. This test for idealized cyclogenesis on the
sphere was first described by Nair et al. [10]. Let ðk0; h0Þ be the rotated coordinate system with north pole
at ðkp; hpÞ with respect to the regular spherical coordinate system ðk; hÞ. In these rotated coordinates, the
PDE to simulate is given by
oh
ot
þ u0

cos h0
oh
ok0
¼ 0; ð18Þ
where u 0is the tangential velocity field in the rotated coordinates and is given by
u0 ¼ xðh0Þ cos h0:
Note that since the vortices are steady there is no velocity in the normal direction v 0of the rotated coordinate
system. The angular velocity x of the vortex field is given by
xðh0Þ ¼
3
ffiffi
3
p

2qðh0Þ sech2ðqðh0ÞÞ tanhðqðh0ÞÞ if qðh0Þ 6¼ 0

0 if qðh0Þ ¼ 0

(
;

where qðh0Þ ¼ q0 cos h0 is the radial distance of the vortex. The exact solution in nondimensional units at time t

is given by
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hðk0; h0; tÞ ¼ 1� tanh
qðh0Þ

c
sinðk0 � xðh0ÞtÞ

� �
; ð19Þ
where c is a parameter defining the characteristic width of the frontal zone. To be consistent with [28], we set
q0 ¼ 3 and c = 5. The initial condition, hðk0; h0; 0Þ, with these parameters is displayed on an unrolled sphere in
Fig. 16.

Upon transformation to an unrotated ðk; hÞ spherical coordinate system (18) becomes [10]
oh
ot
þ u

cos h
oh
ok
þ v

oh
oh
¼ 0;
where
u ¼ xðh0Þðsin hp cos h� cos hp cosðk� kpÞ sin hÞ;
v ¼ xðh0Þ cos hp sinðk� kpÞ:
This form is much more complicated than the original since we have now introduced flow in the normal direc-
tion to the ðk; hÞ grid.

However, since the RBF method is completely independent of how the underlying coordinate system is
oriented, we can simply simulate (18) in its rotated ðk0; h0Þ form. To this end, let x0i ¼ ðk

0
i; h
0
iÞ; i ¼ 1; 2; . . . ;N ,

be the original nodes on the standard ðk; hÞ grid rotated to the new coordinate system ðk0; h0Þ, i.e.
k0i ¼ arctan
sinðki � kpÞ

sin kp cosðki � kpÞ � cos hp tan hi

� �
;

h0i ¼ arcsinðsin hi sin hp þ cos h cos hp cosðki � kpÞÞ:
The method-of-lines RBF formulation of (18) is given by
oh

ot
¼ �W DN h; ð20Þ
where h contains the N discrete value of h at the rotated nodes, W ¼ diagðxðh0iÞÞ; i ¼ 1; . . . ;N , and the differ-
entiation matrix DN ¼ BA�1, where A is given by (2) with xi; xj replaced with x0i, x0j and
Bi;j ¼ cos h0i cos h0j sinðk0i � k0jÞ
1

r
d/
dr

� �����
r¼kx0i�x0jk

; i; j ¼ 1; . . . ;N :
As in the solid body rotation problem, the RBF formulation is completely free of any coordinate singularities.
. The initial condition for the deformational test case on an unrolled sphere. Solid black circles mark the N = 3136 ME node
.
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6.1. Results for deformational flow

The analysis for deformational flow will be similar to that of solid body rotation. We will perform a con-
vergence and eigenvalue/stability study to understand the high performance of the RBF method. However,
Fig. 17. (a) Initial condition displayed in Fig. 16 projected onto the surface of the sphere (view is from the north pole), (b) a band marking
the plane h = 1 on the sphere at t = 0, (c) and (d) are the exact solution at t = 3 with (e) and (f) being the RBF solution at t = 3 (refer to
Section 6.1).



Fig. 199 The
since this is a new test that is performed in the numerical climate modeling community, the only results in the
spectral methods literature that have been published is for the DG method [28] and thus comparison is limited
to this method.

6.1.1. Convergence study

Fig. 17 shows the initial condition, exact solution and GA RBF solution for N = 3136 and e ¼ 6:45 at the
final time t = 3 for two different grey scale mappings: the left column is simply the initial condition displayed
in Fig. 16 projected onto the surface of the sphere, the right column highlights the band corresponding to the
plane h = 1 in Fig. 16 about which the vortex wrap-up occurs. As can be seen, the exact and RBF solutions are
indistinguishable to the eye. Fig. 18 displays the error (exact – numerical). All errors that are less than 10�4 in
magnitude are displayed in white. The maximum errors are located near the center of the vortex wrap-up
where the solution is the most highly oscillatory.

Fig. 19 plots the ‘1 and ‘2 error as a function of the grid spacing
ffiffiffiffi
N
p

on log-linear plot, showing that the
method converges exponentially (i.e. spectral). The sets of nodes used is the same as in the cosine bell test case,
ranging from 526 to 4096. For N = 3136, the ‘1 and ‘2 errors are 1� 10�5 and 5�5
‘1and‘2error at t= 3 time unitsfor the deformational flowtest as a function of the spacing of the ME node sets (h�N�1=2)
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results are an order of magnitude lower than those reported in [28] for the DG method using about the same
number of nodes (N = 3456) with ‘1 and ‘2 errors being approximately 1� 10�4 and 6� 10�4, respectively.
Furthermore, if we increase the number of nodes for the RBF method by 930 to N = 4096, the ‘1 and ‘2 errors
drop to approximately 3� 10�6 and 1:5� 10�5, respectively. To achieve the same accuracy in the ‘1 error, the
DG method requires almost double the number of nodes at N = 7776 and in the ‘2 error it requires 14 times
the number of nodes at N = 55,296 (here, the number of elements has been fixed while increasing the order of
the polynomial expansion on each element, p refinement, which is a better way of increasing accuracy than h

refinement). In other words, while the RBF method is showing spectral convergence, the DG method is show-
ing high-order algebraic convergence in the ‘1 norm and very low-order algebraic convergence in the ‘2 norm.
More surprisingly, however, is the incredible time stability that the RBF method exhibits compared to the DG
method as discussed next.

6.1.2. Eigenvalue stability

In the above convergence study 30 time-steps were taken to go from t = 0 to the final time t = 3, i.e.
Dt ¼ 1=10. This is a factor of 48 less than reported for the DG method which used 1440 time steps due to
its CFL condition. In fact for this test case, as few as 13 time-steps (Dt ¼ 3=13) could be taken with the ‘1

and ‘2 error norms remaining unchanged as seen in Fig. 20. This is a reduction of 110 times compared to what
is needed for the DG method. However, it is noted in [27] that the DG method has a very restrictive time step.
To understand these results we need to take a look at the eigenvalues of the RBF differentiation matrix �WDN

that will govern the stability of the semi-discrete RBF approximation (20).
Figs. 21a–c display the eigenvalues of �WDN for the GA RBF with N = 3136 and e ¼ 6:45 superimposed on

the stability domain of RK4 [41, pp.197–200] and scaled by the time-steps Dt ¼ 3=14; 3=15; 3=18, respectively.
Since the spectrum is no longer purely imaginary but tightly packed about the imaginary axis, instability can
be manifested in different manners. Hence, each of these diagrams shows a distinct feature. The test case
(tfinal ¼ 3) can easily be performed with a time step of 3/14 even though there are eigenvalues on the imaginary
axis that lie just outside the RK4 stability domain as shown in Fig. 21a. However, this will soon lead to tem-
poral instability as seen in Fig. 22a where the ‘1 and ‘2 error are plotted as a function of time for these time-
steps. In the case of Dt ¼ 3=14, instability occurs at about t = 24, a time integration eight times longer than the
test case stated in the literature [28]. In Fig. 21c (Dt ¼ 3=18), no eigenvalues on the imaginary axis are outside
the RK4 stability region but the two eigenvalues with the largest positive real parts lie just outside this domain.
However, these eigenvalues are associated with highly oscillatory eigenmodes and will not come into play until
the solution exhibits such behavior. Fig. 22b displays the exact solution at t = 35, the time at which the RBF
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Fig. 20. The ‘1 and ‘2 error at t = 3 for the deformational flow test as a function of the number of time-steps used in the RK4 integration.
Results are for the N = 3136 ME node set and the GA RBF with e ¼ 6:45.
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approximation with N = 3136 and Dt ¼ 3=18 breaks down both in time and space. From a temporal stand-
point, the eigenmodes with the largest positive real parts are now triggered since the solution is very highly
oscillatory, leading to exponential blow-up. From a viewpoint of spatial resolution, there really are no adverse
effects of the positive real parts of the eigenvalues until the solution features have become too fine to be resolv-
able by the current number of nodes (near the center of the vortex wrap-up there is only one node per wave-
length which is less than the needed theoretical limit of 2 nodes per wave length). As shown in Fig. 21b, with
Dt ¼ 3=15, the two eigenvalues with the largest real parts now lie just inside the RK4 stability domain. This
results in a longer stable time integration as seen in Fig. 22a.

7. Summary

The main goal of this paper is to illustrate the effectiveness and performance of the RBF methodology for
solving purely hyperbolic PDEs on a sphere, using test cases in the numerical climate modeling community
given by solid body rotation and deformational flow. The detailed results of the previous sections can be sim-
ply summed up as follows:

(1) For these test cases, the RBF methodology outperforms all currently used spectral methods in terms of
the number of nodes and time-step needed as well as algorithmic simplicity to achieve a given accuracy.
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(a) In either test case, the code is very short and simple – less than 40 lines of MATLAB, using only
built-in MATLAB routines that are coded at the machine level such as *, 0, and /.

(b) Eigenvalues of the differentiation matrices are either purely imaginary (solid body) or have very small
real parts (deformational flow). The absence of spurious eigenvalues of large amplitude give the abil-
ity to take exceptionally large time-steps.

(c) The method is spectrally accurate for smooth initial conditions, requiring a much lower number of
nodes compared to other commonly used spectral methods on a sphere.
(2) The differentiation matrices are entirely free of any ‘‘pole singularities’’ and invariant of the orientation
of the original coordinate system.

(3) The RBF methodology connects the mathematics directly to the physics without the interference of a
surface-based grid.

Furthermore, algorithmic complexity does not increase with the dimension of the problem, since RBFs only
depend on the Euclidean distance between nodes which is always a scalar independent of dimension (e.g. if
linear advection were posed in 3D, the code used in 2D for the solid body rotation test case would not change
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in length or complexity). These results illustrate that RBFs can provide a promising new approach to modeling
in spherical geometries.

Appendix A. Rotational invariance of DN for solid body rotation

Although we used a spherical coordinate system which was measured from the equator, we will now
show how the RBF derivative matrix DN for the spatial derivatives of (12) is rotationally invariant, i.e.
completely independent of how the original spherical coordinate system was oriented in space. Thus, when
implementing the advective operator with the wind specified by (13) and (14) using RBFs in spherical coor-
dinates, the result is not only singularity free, but is also completely independent of the spherical coordi-
nate orientation.

An equivalent demonstration is to keep the spherical coordinate system fixed, and instead turn (in unison)
both the axis of solid body rotation and all the point locations by an angle a. Let Ci;j be the expression inside
the curly brackets for Bi;j in (11) with u and v given by (13) and (14), respectively, and u0 ¼ 1 for simplicity. If
Ci;j remains invariant with a, then we are finished.

Each entry Ci;j involves only two node points, located at ðki; hiÞ and ðkj; hjÞ. After the axis of solid body
rotation is turned by an angle a, we obtain the new coordinates ðk0; h0Þ for a point ðk; hÞ by the transformation
cos k0 cos h0 ¼ cos k cos h cos a� sin h sin a; ð21Þ
sin h0 ¼ cos k cos h sin aþ sin h cos a: ð22Þ
The goal is to show that
Ci;j ¼ cos a cos h0i cos h0j sinðk0i � k0jÞ þ sin a½sin k0i cos h0i sin h0j � sin k0j cos h0j sin h0i� ð23Þ
depends only on ðki; hiÞ and ðkj; hjÞ (i.e. that it is independent of a).
The analysis turns out to be fairly simple if we consider the node points in Cartesian coordinates. So,

we let the points ðk0i; h
0
iÞ and ðk0j; h

0
jÞ corresponds to the points x0i ¼ ðx0i; y0i; z0iÞ and x0j ¼ ðx0j; y0j; z0jÞ, respec-

tively. Using the relationship between Cartesian and spherical coordinates (5), we can rewrite (23) as
follows:
Ci;j ¼ ðx0jy 0i � x0iy
0
jÞ cos aþ ðy0iz0j � y 0jz

0
iÞ sin a ð24Þ
Now, the counterpart to (21) and (22) in Cartesian coordinates is given by the transformation
x0

y 0

z0

2
64

3
75 ¼ cos a 0 � sin a

0 1 0

sin a 0 cos a

2
64

3
75 x

y

z

2
64
3
75:
Using this transformation we can relate the rotated points in (24) to the original points. After some algebra,
we find the simple expression
Ci;j ¼ xjyi � xiyj ¼ cos hi cos hj sinðki � kjÞ:
Thus, Ci;j is completely independent of the angle a, which shows the RBF methodology for (12) is completely
independent of how the original spherical coordinate system was oriented in space.

Appendix B. Code for solid body rotation with cosine bell IC

ep = 6; % Value of epsilon to used
alpha = pi/2; % Angle of rotation measured from the equator
a = 6.37122e6; % Mean radius of the earth (meters)
u0 = 2*pi*a/12; % Speed of rotation (m/day)-one full revolution in 12 days
R = a/3; % Width of bell
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%%% Load Nodes: http://web.maths.unsw.edu.au/~rsw/Sphere/Energy/index.html %%%
load(‘me1849.dat’); x = me1849(:,1); y = me1849(:,2); z = me1849(:,3);

%%% Compute r
�
2 = (x_j � x_k)�2+

(y_j � y_k)�
2+(z_j � z_k)�

2 %%%

nodes = [x,y,z];

rd2 = zeros(length(nodes),length(nodes));

for j = 1:3
xd1 = nodes(:,j); xd1 = xd1(:,ones(length(xd1), 1));

xd2 = xd1 0;

rd2 = rd2 + (xd1 � xd2).
�
2;

end

%%% Set-up 2D surface grids in (theta,phi) for computing B (eqn.(11)) %%%

theta = atan2(z,sqrt(x.
�
2+y.

�
2)); phi = atan2(y,x); % phi = lambda in paper

tn = theta; tn = tn(:,ones(length(xd1), 1)); tc = tn’;

pn = phi; pn = pn(:,ones(length(phi), 1)); pc = pn’;

%%% Compute differentiation matrix D %%%%

B = 2*(cos(alpha).*cos(tn).*cos(tc).*sin(pn-pc) + � � �

sin(alpha).*(cos(tn).*cos(pn).*sin(tc) - cos(tc).*cos(pc).*sin(tn)));

B = (u0/a)*B.*(-ep
�
2*exp(-ep

�
2.*rd2));

A = exp(-ep
�
2.*rd2);

D = B/A;

%%% Initial Condition Cosine Bell %%%

r = a*acos(cos(theta).*cos(phi)); % initially located at equator, (0,0)

h = 1000/2*(1+cos(pi*r/R)); % height of bell is 1000 m

h(r > = R) = 0;

%%% Time-Stepping - 4th Order RK %%%

dt = 12/288*5/6; % Time-Step for 12 days revolution

for nt = 2:(1*288*6/5)

d1 = dt*D*h;
d2 = dt*D*(h + 0.5*d1);
d3 = dt*D*(h + 0.5*d2);
d4 = dt*D*(h + d3);

h = h + 1/6*(d1 + 2*d2 + 2*d3 + d4);

end
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[10] R.D. Nair, J. Côté, A. Staniforth, Cascade interpolation for semi-Lagrangian advection over the sphere, Quart. J. R. Meteor. Soc. 125

(1999) 1445–1468.
[11] R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophy. Res. 76 (1971) 1905–1915.

http://web.maths.unsw.edu.au/~rsw/Sphere/Energy/index.html


1084 N. Flyer, G.B. Wright / Journal of Computational Physics 226 (2007) 1059–1084
[12] J.C. Mairhuber, On Haar’s theorem concerning Chebychev approximation problems having unique solutions, Proc. Am. Math. Soc. 7
(1956) 609–615.

[13] M.J.D. Powell, The theory of radial basis function approximation in 1990, in: W. Light (Ed.), Advances in Numerical Analysis,
Wavelets, Subdivision Algorithms and Radial Functions, vol. II, Oxford University Press, Oxford, UK, 1992, pp. 105–210.

[14] W.R. Madych, S.A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J.
Approx. Theory 70 (1992) 94–114.

[15] J. Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM J. Math. Anal. 23 (4)
(2001) 946–958.

[16] T.A. Driscoll, B. Fornberg, Interpolation in the limit of increasingly flat radial basis functions, Comput. Math. Appl. 43 (2002) 413–
422.

[17] B. Fornberg, G. Wright, Stable computation of multiquadric interpolants for all values of the shape parameter, Comput. Math. Appl.
48 (2004) 853–867.

[18] B. Fornberg, C. Piret, A stable algorithm for flat radial basis functions on a sphere, SIAM J. Sci. Comp. (in press).
[19] E.W. Cheney, W.A. Light, A Course in Approximation Theory, Brooks/Cole, New York, 2000.
[20] B. Fornberg, J. Zuev, The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl.,

(in press).
[21] J. Wertz, E.J. Kansa, L. Ling, The role of multiquadric shape parameters in solving elliptic partial differential equations, Comput.

Math. Appl. 51 (2006) 1335–1348.
[22] A. Iske, Multiresolution Methods in Scattered Data Modelling, Lecture Notes in Computational Science and Engineering, vol. 37,

Springer-Verlag, Heidelberg, 2004.
[23] A. Sherwood, How can I arrange N points evenly on a sphere? http://www.ogre.nu/sphere.htm.
[24] R.S. Womersley, I.H. Sloan, Interpolation and cubature on the sphere, http://web.maths.unsw.edu.au/~rsw/Sphere/.
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